4. Chemistry A chemist has a 1000-gram sample of a radioactive material. She records the amount of radioactive material remaining in the sample every day for a week and obtains the following data:

	8		
	Day	Weight (in Grams)	i
`	0	1000.0	
	1	897.1	1
	2	802.5	d
	3	719.8	
•	· 4	651.1	
	5	583.4	1
	6	521.7	١
	7	468.3	

- (a) Using a graphing utility, draw a scatter diagram with day as the independent variable.
- (b) Using a graphing utility, fit an exponential function to the data.
- (c) Express the function found in part (b) in the form $A(t) = A_0 e^{kt}$.
- (d) Graph the exponential function found in part (b) or (c) on the scatter diagram.
- (e) From the result found in part (b), find the half-life of the radioactive material.
- (f) How much radioactive material will be left after 20 days?
- (g) When will there be 200 grams of radioactive material?

10. Population Model The following data represent the work population. An ecologist is interested in finding a function that describes the world population.

	Year	Population (in Billions)	_
	1993	5.531	
	1994	5.611	
ļ	1995	5.691	
	1996	5.769	
1.	1997	5.847	
	1998	5.925	
	1999	6.003	
	2000	6.080	
	2001	6.157	

Source: U.S. Census Bureau

- (a) Using a graphing utility, draw a scatter diagram of the data using year as the independent variable and population as the dependent variable.
- (b) Using a graphing utility, fit a logistic function to the
- (c) Using a graphing utility, draw the function found in part (b) on the scatter diagram.
- (d) Based on the function found in part (b), what is the carrying capacity of the world?
- (e) Use the function found in part (b) to predict the population of the world in 2004.
- (f) When will world population be 7 billion?
- (g) Compare actual U.S. Census figures to the prediction found in part (e).